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The Green-function formalism for the electromagnetic field in a magnetoelectric �ME� medium is con-
structed as a generalization of conventional Casimir theory. Zero temperature is assumed. It is shown how the
formalism predicts electromagnetic momentum to be extracted from the vacuum field, just analogous to how
energy is extracted in the Casimir case. The possibility of extracting momentum from vacuum was discussed
recently by Feigel �Phys. Rev. Lett. 92, 020404 �2004��. In contrast to Feigel’s approach, we assume that the
ME coupling occurs naturally, rather than being produced by external strong fields. We also find the same
effect qualitatively via another route by considering one single electromagnetic mode.
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I. INTRODUCTION

Consider a magnetoelectric �ME� medium whose consti-
tutive relations can be written on compact form as

D = �0� · E +
1

�0c
� · B , �1�

H = −
1

�0c
�T · E +

1

�0
�−1 · B . �2�

Here � is the ME coupling parameter, assumed in general to
be a pseudotensor, with ��T�ik��ki. We employ Système In-
ternational units, so that the relation �0�0=1 /c2 refers to a
vacuum, and we let the permittivity tensor �ik and permeabil-
ity tensor �ik be nondimensional �i.e., relative�, so that the
relations Di=�0�ikEk and Bi=�0�ikHk apply in the nonchiral
case when �=0. We shall take all material quantities �ik, �ik,
and �ik to be real and frequency independent. The tensors �ik
and �ik are symmetric; this being a general electrodynamic
property following from the symmetry of the kinetic coeffi-
cients �1�. No such symmetry condition exists for �, how-
ever. In some materials �ik is symmetric, �ik=g�ik with g a
pseudoscalar function, or, what is of more interest in the
present context, �ik can be antisymmetric. An anisotropic
crystal is called biaxial if the diagonal permittivity compo-
nents �x��y ��z along the principal axes, and is called
uniaxial if �x=�y ��z.

In the following we will focus attention on the situation
where the anisotropy in �ik occurs naturally. Cases where the
anisotropy is created artificially, by means of strong electric
and magnetic fields perpendicular to the direction of light
propagation �cf., for instance, Ref. �2��, are for the most part
outside the scope of the present paper.

The macroscopic theory of ME media has been known for
a long time. The reader may consult the book of O’Dell, for
instance �3�, as well as classic papers �4,5�. A recent review
is given by Fiebig �6�; other relatively recent papers are Refs.
�7–10�. As explained in the Fiebig paper, two major sources
for “large” ME effects can be identified. �i� In composite

materials the ME effect is generated as a product property of
a magnetostrictive and a piezoelectric compound. A linear
ME polarization is induced by a weak ac magnetic field os-
cillating in the presence of a strong dc bias field. �ii� In
multiferroics the internal magnetic and/or electric fields are
enhanced by multiple long-range ordering. The ME effect
can be strong enough to trigger magnetic or electrical phase
transitions.

The recent paper of Feigel �11�—cf. also the comments
�12–15�—sharpened the interest in this special kind of mate-
rials. The main idea of this paper was to suggest a new
quantum mechanical effect, namely the extraction of material
momentum from the electromagnetic vacuum oscillations.
The suggested effect is thus analogous to the well-known
Casimir effect �16�, in which case it is an energy, not a mo-
mentum, that is extracted from the vacuum field. The Feigel
effect thus belongs to a very active area in modern physics.
Its main theme is the observability and the interpretation of
vacuum-induced phenomena in macroscopic media. The ef-
fect has, moreover, a bearing on the famous Abraham-
Minkowski energy-momentum problem in dielectric matter
�17,18�.

This brings us to the main topic of the present paper,
which is to investigate how the Green function approach,
frequently used in Casimir-related problems, can be applied
to a ME medium. To our knowledge, such a general ap-
proach has not been developed before. We follow the same
basic field theoretical method as in the recent paper of Ell-
ingsen and Brevik �19�, dealing with the Casimir effect. We
will show that, even in the presence of the complexity in
formalism caused by the ME effect, the theory leads to a
right-left asymmetry in a medium-filled cavity enclosed
within conducting walls placed at positions z=0 and a, and
thus permits the extraction of momentum from the vacuum
field, in principle. Our field theoretical formalism thus sup-
ports earlier results that were based upon consideration of
particular modes only. We will also have the opportunity to
comment occasionally on some of the papers that followed
the Feigel paper �20–22�.

In Secs. II and III we establish the governing equation for
the Green functions, relate this to the two-point functions for
the electromagnetic fields, and give explicit solutions in the
presence of the two conducting plates. In Sec. IV we digress
to consider the momentum conservation equation for a ME*Corresponding author: iver.h.brevik@ntnu.no
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medium, and show how the right-left momentum asymmetry
occurs for one single mode. In Sec. V we return to the
Green-function approach, and show how the momentum
asymmetry occurs also for the vacuum field, when summing
over all modes propagating in the ±x directions.

We thus discuss the momentum asymmetry via two dif-
ferent approaches. A more detailed overview of the outline of
the paper is given in Sec. VI.

Readers interested in recent reviews on the Casimir effect
may consult Refs. �23–28�. Much information can also be
found in Refs. �29,30�.

We emphasize that the formalism below is constructed
from the same main standpoint as in conventional Casimir
theory: we calculate the change in field momentum caused
by the geometric boundaries, i.e., the plates. The undisturbed
system with respect to which we regularize Green-function
expressions is an infinite medium �without plates�, made up
of the same material. It is thus clear that in the limit when the
separation between the plates goes to infinity, the effect that
we calculate has to go to zero.

II. GOVERNING EQUATIONS FOR GREEN’S FUNCTION

In this section we will establish the governing equations
for the retarded Green function in the chiral medium. When
this function is known, one can find the electromagnetic two-
point functions and thus construct expressions for energy and
momentum in the field. From now on, we assume the mate-
rial to be isotropic, so that �ik=��ik, �ik=��ik. Important in
our context is that the coupling parameter �ik will still be
permitted to be anisotropic. As already mentioned we take all
material parameters �, �, and �ik to be real and frequency
independent. They will, moreover, be assumed to be inde-
pendent of the spatial coordinates. Our medium is thus as-
sumed to be spatially homogeneous but chiral. �If the aniso-
tropy of �ik is created artificially, by means of strong crossed
electric and magnetic fields, the anisotropy property of �ik
holds of course only in the constant field region between the
condenser plates.�

Let us first invert the constitutive relations �1� and �2� to
get

E =
1

��0
�D −

�

c
� · H� , �3�

B = ��0�H +
c

�
�T · D� . �4�

These expressions hold when the EM effect is small, ��ik�
�1, what in practice is always the case. Terms of order �2

are neglected.
Consider now Maxwell’s equations in conventional form,

� · D = �, � · B = 0, �5�

� � E = − Ḃ, � � H = J + Ḋ , �6�

and take the curl of the first member of Eq. �6�. Observing
Eq. �4� we then get, when neglecting terms of order �2

throughout, the following coupled vector equation for the
basic fields E and B:

� � � � E +
��

c2 Ë +
�

c
� · B̈ +

�

c
� � ��T · Ė� = − ��0J̇ .

�7�

If �=0, the coupling between the fields is absent. In compo-
nent form the equation can be written

�2Ei − �i�� · E� −
��

c2 Ëi −
�

c
�ikB̈k −

�

c
�lk curlik Ėl = ��0J̇i.

�8�

We have here defined curlik�	ijk� j, where 	ijk is the antisym-
metric Levi-Civita symbol with 	123=1.

In Eq. �8�, the magnetic field Bk can actually be replaced
by electric field components in view of one of Maxwell’s

equations, Ḃk=−curlkl El. We obtain

	�il�
2 − �i�l − �il

��

c2 �t
2 +

�

c
�ik curlkl �t −

�

c
�lk curlik �t
El

= ��0J̇i, �9�

with �t=� /�t.
We now turn to the Green-function approach. According

to the source theory of Schwinger et al. �see, for instance,

Refs. �24� or �31��, we make the correspondence J→ Ṗ, �
→−� ·P. We introduce a dyad ��x ,x�� such that

E�x� =
1

�0
� d4x���x,x�� · P�x�� , �10�

where x= �r , t�. Due to causality, t� is only integrated over
the region t�
 t. The dyad � is the retarded Green function;
also called the generalized susceptibility. We take the Fourier
transform of �,

��x,x�� = �
−�

� d�

2
e−i����r,r�,��, � = t − t�, �11�

exploiting the stationarity of the system. We transform also
the electric field,

E�x� = �
−�

� d�

2
e−i�tE�r,�� , �12�

with a similar expression for P�x�. The governing equation
for the Green function then becomes

� � � � ��r,r�,�� −
���2

c2 ��r,r�,��

+
i��

c
� · �� � ��r,r�,���

−
i��

c
� � ��T · ��r,r�,���
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=
��2

c2 ��r − r��1 , �13�

or, on component form,

	�i� j − �ij�
2 −

���2

c2 �ij +
i��

c
�il curllj

−
i��

c
� jl curlil
� jk�r,r�,�� =

��2

c2 ��r − r���ik.

�14�

If �ik=0 and �=1, this equation reduces to Eq. �75.16� in
Ref. �32� �their symbol Dik is the same as our −�c2�ik /�2�.

If �ik�r ,r� ,�� is known, we can make use of the
fluctuation-dissipation theorem �which has a meaning both
classically and quantum mechanically; cf. Refs. �32,33��, to
calculate the two-point functions:

i�Ei�r�Ek�r��� =
�

�0
Im��ik�r,r�,��� , �15�

i�Bi�r�Bk�r��� =
�

�0

1

�2curlij curlkl� Im�� jl�r,r�,��� ,

�16�

�Ei�r�Bk�r��� =
�

�0

1

�
curlkl� Im��il�r,r�,��� . �17�

Here curlik� =	ijk� j�, where � j� is the derivative with respect to
component j of r�. The expressions �15�–�17� refer to zero
temperature; a factor sgn��� is omitted throughout. The
spectral correlation tensor �Ei�r�Ek�r��� is defined accord-
ing to

�Ei�x�Ek�x�� = �
−�

� d�

2
e−i���Ei�r�Ek�r���. �18�

�Note the meaning of the formalism here: the spectral corre-
lation tensor is related to the Fourier transform
�Ei�r ,��Ek�r� ,��� of the two-point function �Ei�x�Ek�x��
via

�Ei�r,��Ek�r�,��� = 2�Ei�r�Ek�r������ + ���; �19�

cf. Eq. �122.12� in Ref. �33� or also Appendix B in Ref.
�34�.� Before going on to solve these equations, we will
specify the geometry to be assumed in the rest of this paper.

III. SPECIFICATION OF THE GEOMETRY. SOLUTIONS
FOR THE GREEN FUNCTIONS

Let us assume the same setup as in conventional Casimir
theory, namely two perfectly conducting parallel plates sepa-
rated by a gap a. The geometry is sketched in Fig. 1.

As mentioned earlier, we will mainly be considering the
case where the ME effect occurs naturally. We assume ac-
cordingly that �ik is given initially and is constant every-
where in the fluid, on the inside as well as on the outside of
the plates. Because of the translational invariance in the x

and y directions we can transform the Green function once
more to obtain

��r,r�,�� =� d2k

�2�2eik·�r−r��g�z,z�,k,�� . �20�

We also transform the delta function:

��r − r�� =� d2k

�2�2eik·�r−r����z − z�� , �21�

and assume that �ik has the following form:

�ik = �0 0 0

0 0 �yz

0 �zy 0
� . �22�

Our coordinate system is thus henceforth fixed, relative to
the material. We focus attention on only one particular wave
number k in the following, namely k=kxex, directed along
the x axis. In Figs. 1�a� and 1�b� the transverse magnetic
�TM� and the transverse electric �TE� modes in the cavity
corresponding to this k vector are indicated �35�.

Our conventions above mean that we can let �2→�z
2−kx

2.
We can now write down the governing equations for the
Fourier components gik from Eqs. �14�. The simplest equa-
tion follows by setting �ik�= �yy�:

�z
2gyy − ��2 −

2�kx�

c
�yz�gyy = −

��2

c2 ��z − z�� , �23�

where we have defined

�2 = kx
2 − ���2/c2. �24�

Equation �23� is uncoupled; this being a consequence of our
choice for k implying that �y→0.

Setting �ik�= �xx� we obtain

z

x= 0z

By Ex

Ez

TM: k

z

x= 0z

Ey Bx

Bz

TE: k

az =

az =

a)

b)

FIG. 1. Sketch of the geometry. The TM and TE modes are
shown. The tensor �ik, constant everywhere in the fluid, is given by
Eq. �20�. The wave vector k is directed along the x axis.
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i�kx +
��

c
�zy��zgzx − ��z

2 +
���2

c2 �gxx =
��2

c2 ��z − z�� ,

�25�

and with �ik�= �zz�,

i�kx +
��

c
�zy��zgxz + ��2 +

2�kx�

c
�zy�gzz =

��2

c2 ��z − z�� .

�26�

The last two equations are coupled. Consider finally the non-
diagonal components: with �ik�= �zx� we obtain

i�kx +
��

c
�zy��zgxx + ��2 +

2�kx�

c
�zy�gzx = 0, �27�

and with �ik�= �xz�,

i�kx +
��

c
�zy��zgzz − ��z

2 +
���2

c2 �gxz = 0. �28�

The coupling in the differential equation �25� for gxx can be
removed if we make use of Eq. �27� differentiated with re-
spect to x. Some manipulations, again observing that �ik is
small, yield

�z
2gxx − K2gxx =

K2

�
��z − z��, K = ��1 +

�kx�

�2c
�zy� .

�29�

Equation �23� can be rewritten similarly:

�z
2gyy − L2gyy = −

��2

c2 ��z − z��, L = ��1 −
�kx�

�2c
�yz� .

�30�

The differential equations �29� and �30� for the diagonal
components are convenient for further manipulation. Note
that the values of K and L are dependent on whether the
direction of propagation of the wave is to the right or to the
left. If �ik=0, the expressions agree with those of Refs.
�19,36�.

We now proceed to solve the equations, beginning with
Eq. �30�. As Ey =0 at z=0 and z=a because of the boundary
conditions, we have gyy�0,z� ,k ,��=gyy�a ,z� ,k ,��=0. The
solution of Eq. �30� can then be written

gyy =
��2

2Lc2�e−L�z−z�� − e−L�z+z��

+
2�cosh L�z − z�� − cosh L�z + z���

exp�2La� − 1
� . �31�

When �ik=0, this expression agrees with that given in Ap-
pendix C of Ref. �37� in the limit of perfectly conducting
plates.

Next considering gxx, we must analogously have
gxx�0,z� ,k ,��=gxx�a ,z� ,k ,��=0 in view of the boundary
conditions. The solution of Eq. �29� becomes

gxx = −
K

2�
�e−K�z−z�� − e−K�z+z��

+
2�cosh K�z − z�� − cosh K�z + z���

exp�2Ka� − 1
� . �32�

The expressions �31� and �32� are fairly complicated. For
practical purposes it is possible to simplify the expressions
considerably, by omitting terms containing �z+z��. The rea-
son is that these terms do not contribute to physical quanti-
ties like the Casimir force on the plates or to the field mo-
mentum in the gap. This can be seen in two different ways.
The simplest way is to argue, as in Sec. 81 in �32�, that by
putting z=z� in solutions having the argument �z+z�� one
would obtain physical quantities like field momentum in the
gap varying with the position z. This would contradict the
law of conservation of momentum. Another way of examin-
ing this rather subtle point is to include the �z+z�� terms
everywhere in the formalism, and to verify that they really
do not contribute in the end. In addition to the discussion in
�32�, one can find more mathematical details about this point
in the paper �19� and in the thesis �38�.

We can, moreover, omit the source-dependent inhomoge-
neous �z−z�� term in each of the Green functions. This term
represents the solution pertaining to the delta function source
inside a homogeneous medium filling all space. Being geom-
etry independent, it cannot contribute to any physical quan-
tity related to the geometry. All in all, we shall in the follow-
ing use the “effective” Green functions

gxx = −
K

�

cosh K�z − z��
exp�2Ka� − 1

, �33�

gyy =
��2

Lc2

cosh L�z − z��
exp�2La� − 1

. �34�

Consider finally the remaining diagonal component, gzz. To
this end we first observe the symmetry property

gxz�z,z�,k,�� = gzx�z�,z,− k,�� , �35�

which is an example of the general relation

�ik�r,r�,�� = �ki�r�,r,− �� , �36�

when expressed in Fourier space �cf. Sec. 81 in Ref. �32��.
From Eq. �27� we have, when inserting the expression �33�,

gzx�z,z�,k,�� =
i

�
�kx +

��

c
�zy� sinh K�z − z��

exp�2Ka� − 1
. �37�

Now, to the required order K�−kx�=�2 /K�kx�, according to
Eq. �29�. Thus we get from Eq. �35�

gxz�z,z�,k,�� =
i

�
�kx −

��

c
�zy� sinh��2�z − z��/K�

exp�2�2a/K� − 1
,

�38�

where here and henceforth K=K�kx� as defined in Eq. �29�.
From Eq. �26� we then finally get �delta-function omitted�
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gzz =
�2kx

2

K3�

cosh��2�z − z��/K�
exp�2�2a/K� − 1

. �39�

Before applying these Green-function expressions to the Fei-
gel effect, we shall in the next section follow a more sim-
plistic approach and consider the right-left asymmetry in the
field momentum considering one single mode only.

IV. ENERGY-MOMENTUM FORMALISM: RIGHT-LEFT
FIELD MOMENTUM ASYMMETRY

A. Energy-momentum formalism

Before considering the momentum asymmetry for one
single chosen direction of propagation, we need to develop
the formalism related to the electromagnetic energy-
momentum tensor. In this section we take a general ap-
proach, allowing for external charges � and currents J. The
coupling tensor �ik is allowed to be general �not necessarily
of the form given in Eq. �22��, though constant, and we allow
also for optical anisotropy by letting ��ik→�ik, ��ik→�ik
with the material parameters constant.

It is convenient to write the constitutive relations �1� and
�2� in tensor form,

Di = �0�ikEk +
1

�0c
�ikBk, �40�

Hi = −
1

�0c
�kiEk +

1

�0
�−1

ikBk. �41�

In view of Maxwell’s equations �5� and �6� we obtain the
conservation equation for energy,

� · S + ẇ = − E · J , �42�

where E ·J is the energy dissipation,

S = E � H �43�

the Poynting vector, and

w =
1

2
�E · D + H · B� �44�

the energy density.
As for the momentum conservation, it is convenient to

start from the equation

�t�D � B�i = − �Ei − 	ijkJjBk + �k�EiDk + HiBk�

− �klEk,iEl − �−1
klBl,iBk, �45�

which follows from Maxwell’s equations �here Ei,k��kEi,
etc.�. Introducing the Lorentz force density

fL = �E + J � B , �46�

as well as the Minkowski stress tensor �17�,

Tik
M = EiDk + HiBk −

1

2
�E · D + H · B��ik, �47�

we can write the momentum conservation equation as

�kTik
M − ġi

M = f i
L, �48�

where

gM = D � B �49�

is the Minkowski momentum density. �The symbol g for mo-
mentum is not to be confused with the Green functions.� It is
generally known that the above expressions hold when the
medium is optically anisotropic. It is, however, somewhat
remarkable that they hold when �ik�0 also; there seems to
be no simple physical reason why �ik should drop out from
the formalism.

In the case of high frequency fields, in particular optical
fields, the Minkowski theory appears to be both simple and
capable of describing all experiments �cf. the analysis of one
of the present authors on this point some years ago �39�;
some more recent papers are listed in Ref. �19��. However, at
low frequencies where the effect of the oscillations are them-
selves observable—notably in the Lahoz-Walker experiment
�40�—the experiments agree not with the Minkowski but
rather with the Abraham force, which accordingly can be
taken to be the most “physical” alternative at these frequen-
cies. The Abraham theory �18� consists in symmetrizing the
stress tensor,

Tik
A =

1

2
�EiDk + EkDi� +

1

2
�HiBk + HkBi� −

1

2
�E · D + H · B��ik,

�50�

and taking the momentum density to be

gA =
1

c2E � H , �51�

the latter satisfying the relation g=S /c2, the so-called
Planck’s principle of inertia of energy.

We assume henceforth optical anisotropy so that � and �
are scalars, and also that �=0, J=0. The Minkowski and
Abraham stress tensors become thereby equal, Tik

M =Tik
A . The

Abraham conservation equation for momentum can be writ-
ten as

�kTik
A − ġi

A = ���� − 1�/c2��t�E � H�i, �52�

where the term on the right-hand side is the “Abraham term.”
It was precisely this term that was measured by Walker and
Lahoz �40�. In a high-frequency field, it fluctuates out. We
shall return to the Abraham force in Sec. VI.

B. Momentum asymmetry

Referring to Fig. 1, we consider to begin with only the
right-moving TE wave corresponding to the field compo-
nents

Ey =�2

a
sin knzei�k·x−�t�, �53�

Bx =�2

a

ikn

�
cos knzei�k·x−�t�, �54�
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Bz =�2

a

kx

�
sin knzei�k·x−�t�, �55�

the other components being zero. �We use the same normal-
ization of the fields as Tiggelen et al. �22�.� Here k ·x=kxx,
and kn=n /a with n=1,2 ,3. . . the transverse wave number.
For a given value of kx, the eigenfrequencies � are thus
discrete. We can derive the dispersion equation by going
back to the field equation �9� for Ei=Ey in the source-free
case, observing that �lEl=�yEy =0, inserting the form �22� for
�ik. We obtain

�kx
2 + kn

2 −
��

c2 �2 −
2�kx�

c
�yz�Ey = 0, �56�

which implies to the lowest order in �yz

� =
c

���
�kx

2 + kn
2	1 −��

�

kx

�kx
2 + kn

2
�yz
 . �57�

The right-left asymmetry is manifest. A left-moving wave is
described by the substitution kx→−kx.

Let us now calculate the field energy density, w, for the
TE mode. We get

w =
1

4
�E · D* + H · B*�

=
�0�

2a
	1 +

c2

��

kx
2

�2
sin2 knz +
1

2�0�a

kn
2

�2 cos2 knz;

�58�

the �yz terms drop out when w is written in this way. It is
convenient to consider the expression integrated from z=0 to
a, thereby getting the energy W per unit length and width,

W = �
0

a

wdz =
�0�

4
	1 +

c2

��

kx
2 + kn

2

�2 
 . �59�

Using Eq. �57� we can write this in terms of the wave-
number components,

W =
�0�

2 	1 +
1

2
��

�

kx

�kx
2 + kn

2
�yz
 . �60�

The Poynting vector in the x direction, Sx, may be calculated
as

Sx =
1

2
�E � H*�x = � 1

�0�a

kx

�
−

�yz

�0ca
�sin2 knz , �61�

which means that the integrated energy flux when expressed
in terms of wave number becomes

qx = �
0

a

Sxdz =
�0c

2 	� �

�

kx

�kx
2 + kn

2
−

kn
2

kx
2 + kn

2�yz
 . �62�

Alternatively, we might calculate the energy flux as qx
=Wux, where ux is the group velocity

ux =
��

�kx
=

c
���

kx

�kx
2 + kn

2
−

c

�
�yz. �63�

This agreement is as we should expect, since we are dealing
with the propagation of low-amplitude waves. The kinematic
group velocity concept and the dynamic energy flow velocity
concept should be the same.

Consider finally the Minkowski momentum density gx
M:

gx
M =

1

2
�D � B*�x =

�0�

a

kx

�
�1 +

kxc

��
�yz�sin2 knz . �64�

Comparison between Eqs. �61� and �64� shows that the rela-
tionship gx

M = ��� /c2�Sx, known from conventional optics,
does not hold when �yz is different from zero. We also give
the expression �64� when integrated over z:

Gx
M = �

0

a

gx
Mdz =

�0�

2

kx

�
�1 +

kxc

��
�yz� . �65�

Again, the right-left asymmetry is manifest.

V. GREEN-FUNCTION APPROACH
TO THE FEIGEL EFFECT

Our intention now is to calculate the Minkowski momen-
tum asymmetry in the chiral medium using the Green-
function approach from Sec. III. We start from the following
general expression, reverting to real representation for the
fields,

gM = lim
x�→x

�
−�

� d�

2
e−i��� d2k

�2�2eik·�r−r���D�r� � B�r���k.

�66�

We assume zero temperature, so that the brackets �  mean
purely quantum mechanical average. As no thermal fields are
excited, the field momentum as well as the field energy stem
exclusively from the vacuum zero-point oscillations.
Whereas in the previous section we considered the contribu-
tion from one single selected mode only, we shall now con-
sider the effect of summing over all available vacuum
modes. We shall impose one restriction, however: the wave
number k will be required to lie either in the positive or the
negative x direction. This corresponds to our Green-function
approach in Sec. III. Mathematically, it means that we can let
�d2k / �2�2→�dkx /2. As the distribution of fields does not
vary in the transverse y direction, we can effectively let
�y ⇒0 when applied to the fields. Evidently, the x component
of field momentum has to be zero in the case of a nonchiral
medium; if there is an asymmetry following from the formal-
ism this has to be caused by the presence of �ik. As before,
we assume the particular form �22� for �ik.

The x component of Eq. �66� becomes �we omit the “lim”
from now on�

gx
M = �

−�

� d�

2
e−i���

−�

� dkx

2
eikx�x−x���Dy�r�Bz�r��

− Dz�r�By�r���k. �67�

We insert from Eqs. �1� and �2�
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Dy = �0�Ey +
�yz

�0c
Bz, �68�

Dz = �0�Ez +
�zy

�0c
By , �69�

and get

gx
M = �

−�

� d�

2
e−i���

−�

� dkx

2
eikx�x−x��	�0��Ey�r�Bz�r���k

− �0��Ez�r�By�r���k −
�zy

�0c
�By�r�By�r���k

+
�yz

�0c
�Bz�r�Bz�r���k
 . �70�

We have thus so far expressed gx
M in terms of the two-point

functions for the fundamental fields. Using Eqs. �16� and
�17� we calculate

�Ey�r�Bz�r���k =
�

�0

− ikx

�
Im gyy , �71�

�Ez�r�By�r���k =
�

�0

1

�
��z� Im gzx + ikx Im gzz� , �72�

�By�r�By�r���k =
�

�0

i

�2 ��z
2 Im gxx − ikx Im �zgzx

− ikx�z Im gxz − kx
2 Im gzz� , �73�

�Bz�r�Bz�r���k =
�

�0

− ikx
2

�2 Im gyy . �74�

We have here, as above, naturally defined � �k via the rela-
tion

�Ey�r�Bz�r��� = �
−�

� dkx

2
eikx�x−x���Ey�r�Bz�r���k, �75�

etc. We can thus express gx
M as

gx
M = ��

−�

� d�

2�
e−i���

−�

� dkx

2
eikx�x−x���  , �76�

where

�  = − ikx� Im gyy − ���z� Im gzx + ikx Im gzz�

+
ic

�
�zy�− �z

2 Im gxx + ikx Im �zgzx + ikx�z Im gxz

+ kx
2 Im gzz� −

ikx
2c

�
�yz Im gyy . �77�

This expression shows that it is necessary to calculate gyy,
gzx, and gzz to order �ik. From Eqs. �34�, �37�, and �39�, we
get

gyy =
��2

c2

1

�d
	1 +

�kx�

�2c
�1 +

2�a

d
e2�a��yz
 , �78�

�z�gzx = − �zgzx

= −
i�kx

�d
�1 +

��

kxc
	1 +

kx
2

�2�1 −
2�a

d
e2�a�
�zy� ,

�79�

gzz =
kx

2

��d
	1 −

3�kx�

�2c
�1 −

2�a

3

e2�a

d
��zy
 , �80�

where d is defined as

d = e2�a − 1. �81�

The remaining terms in Eq. �77� are, however, multiplying
�zy or �yz, and so need not to be expanded in �ik. Thus to
sufficient accuracy

�z
2gxx = −

�3

�

1

d
, �82�

�zgzx = �zgxz =
i�kx

�

1

d
, �83�

gyy =
��2

�c2

1

d
, �84�

gzz =
kx

2

��

1

d
. �85�

We now put �=0, x−x�=0 in Eq. �76�, and perform a stan-
dard complex frequency rotation whereby �→ i�, with � real
�31�. As d� /�→d� /�, it follows from Eq. �76� that of physi-
cal importance are only those terms in �  that are real after
the rotation �gx

M has to be real�. Thus the first terms in Eqs.
�78�–�80� do not contribute. This is what we should expect:
the asymmetry in momentum is caused by �ik. After some
calculation we obtain, by letting �−�

� d�→2�0
�d�, �−�

� dkx
→2�0

�dkx because of symmetry of the integrand about the
origin,

gx
M =

4��

c
�

0

� d�

2
�

0

� dkx

2

kx
4

�3d
�	1 −

���2

kx
2c2

2�a

d
e2�a
�yz

−
2�2

kx
2 	1 +

3kx
2

2�2 −
�a

d
�1 +

kx
2

�2�e2�a
�zy� . �86�

Recall that d is given by Eq. �81�, where now �2=kx
2

+���2 /c2. The integrals are seen to be finite. This is so be-
cause we have already performed the regularization by omit-
ting those parts in the Green function that refer to the infinite
undisturbed system �cf. also the remarks at the end of Sec. I�.
If the separation becomes infinite, then d→e2�a→�, and
gx

M →0 as it must; all plate-induced physical effects have to
go away in this limit.

The expression �86� may be conveniently rewritten in
terms of polar coordinates. Introduce X=kx=� cos �, Y
= ���� /c��=� sin �, so that
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X2 + Y2 = �2. �87�

The area element in the XY plane is �d�d�= ���� /c�dkxd�.
Then

gx
M =

�

2��

�
�

0

/2

cos4 �d��
0

� �2d�

d

��	1 − tan2 �
2�a

d
e2�a
�yz

− 	5 + 2 tan2 � − �2 + tan2 ��
2�a

d
e2�a
�zy� . �88�

The integrals can be evaluated to give

gx
M =

���3�
16a3��

�
�zy , �89�

where ��3� is the Riemann zeta function with argument 3. It
is noteworthy that only one of the ME coefficients, �zy, ap-
pears in this expression. The factor multiplying �yz in Eq.
�88� turns out to be zero. There seems to be no simple reason
for this, although the behavior is obviously related to the
complicated structure of Eq. �70� and the need to expand gyy,
gzx, and gzz in �ik; cf. Eqs. �78�–�80�. Recall that the x direc-
tion has been singled out as special, and also that we have
taken the variation of the fields in the transverse y direction
to be equal to zero.

The quantity gx
M is measurable, in principle. Before any

measurement can be done, the expression �89� has of course
to be augmented by contributions from all the other values of
k. Aspects connected with real experiments lie outside the
scope of the present paper.

VI. SUMMARY AND DISCUSSION

Let us first recall the assumptions on which the above
calculation is based.

�1� The tensor �ik characterizing the magnetoelectric me-
dium is given naturally over all space in the fluid, on the
inside as well as on the outside of the conducting plates. The
constitutive relations are Eqs. �1� and �2�, or, in inverse form,
Eqs. �3� and �4� when the magnitude ��ik� of the coupling is
small. In the example that we calculated in detail, �ik is given
by Eq. �22�. The tensor �ik may be asymmetric, in contrast to
the permittivity �ik and permeability �ik which are always
symmetric.

�2� We have followed two different approaches, giving the
most weight to the Green-function approach since this does
not seem to be treated very much in the literature. We took
the temperature to be zero. The governing equation for the
dyad �ik is Eq. �14�. The full solution of two of the diagonal
components, gyy and gxx, introduced as Fourier components
of the �’s via Eq. �20�, are given by Eqs. �31� and �32�. We
have here assumed that there is no variation of the fields in
the transverse y direction. The derivation of Eqs. �31� and
�32� generalizes conventional Green-function Casimir theory
�24,37� to the case of ME media. For practical purposes it
turns out to be possible to simplify the expressions consid-

erably, by omitting terms that do not contribute to physical
quantities in the end. The arguments for proceeding in this
way are spelled out, for instance, in Ref. �32�. The relevant
reduced components of gik in our case are given at the end of
Sec. III.

�3� In Sec. IV we deviated to follow a different, and more
simple, approach. After having established the momentum
conservation equation for a ME medium, we calculated the
right-left asymmetry for one single mode only �choosing one
of the modes considered in Ref. �22��. The results are given
by Eqs. �64� and �65�. Adding two similar modes, one propa-
gating in the +x direction and one in the −x direction, we
obtain a net flow of momentum, caused by the coupling �yz.

�4� In Sec. V we returned to the Green-function approach,
calculating the net x component of momentum arising now
not from one single mode, but from all modes propagating in
the ±x directions in the vacuum field. The main result is
given by Eq. �89�. All terms independent of �ik drop auto-
matically out of the formalism, in accordance with what we
should expect beforehand.

�5� On physical grounds one may ask: where does the net
electromagnetic momentum come from? Obviously, it cannot
come from “nothing.” We are actually comparing two differ-
ent physical situations here. The first is when the conducting
plates are infinitely far separated. This is our initial
“vacuum” state. The final state is when the plates have been
brought close to each other, infinitely slowly. The calculated
quantity gx

M is the Minkowski momentum density extracted
during this process of change of the plate separation. The
coupling parameter �ik in the fluid is the same, all the time.
The process is thus conceptually quite close to the process
encountered in usual Casimir theory; the main difference be-
ing that it is now momentum, not energy, that is extracted.

�6� The setting of our thought experiment is similar, but
not exactly the same, as that envisaged in Feigel’s paper �11�.
Feigel assumed the coupling �ik in the fluid to be the result
of applying strong electric and magnetic fields. We have de-
liberately avoided this picture since it complicates the situa-
tion in the sense that one has to deal with two sets of fields,
both the external fields, and the wave modes. When assum-
ing naturally occurring �ik instead, as we have done, the
interpretation of the effect becomes more transparent.

Before leaving this idea, let us, however, note the follow-
ing point: Assume that strong crossed fields E0 and H0 are
applied between the conducting plates at the instant t=0.
Then, during the time when the external fields increase in
strength, there acts an Abraham force in the fluid in the in-
terior. The force density is given by the expression on the
right in Eq. �52�. Integrating over time, from t=0 until the
external fields have become constant, we see that the follow-
ing mechanical momentum density is imparted to the fluid:

gA =
�� − 1

c2 �E0 � H0� . �90�

This is the dominant momentum given to the fluid between
the plates. In addition comes the momentum transferred from
the wave modes; these are connected with �ik. The momen-
tum �89� is actually very similar to the momentum �or more
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strictly the angular momentum� transferred to the suspended
dielectric cylindrical shell in the Walker-Lahoz experiment in
ordinary electrodynamics �40,39�.

�7� It might appear surprising that in Feigel’s paper
a high-frequency cutoff �cut is introduced, whereas in the
present treatment there is no need of a cutoff. The reason for
this behavior is that the two formalisms are constructed dif-
ferently: Feigel considers the total contribution, including
that of the infinite unconstrained system, whereas in our case
we have regularized the infinite contribution away. The case
of high frequencies leads in Feigel’s case to infinities,
whereas in our case it leads to zero. Again, this is the same
point as was emphasized at the end of Sec. I. We are gener-
ally looking at the present problem as a sort of Casimir-type
problem.

�8� What is the connection between the Feigel effect and
relativity? In this context it might be of interest to recall how
the relativistic formulation of electrodynamics in continuous
media is formulated. There is always one particular inertial
system S0 here, namely the one where the medium is at
rest—this was emphasized already in the classic papers of
Jauch and Watson �41�. The relativistic formulation is ob-
tained by introducing two electromagnetic field tensors F��

and H�� such that the covariant Maxwell equations

��F�� + ��F�� + ��F�� = 0, ��H�� = 0 �91�

agree with the standard Maxwell equations in S0 �we assume
no external charges or currents�. The electromagnetic
energy-momentum tensor S��, assuming Minkowski’s ex-
pression for the momentum density, is divergence-free,

��S�� = 0, �92�

meaning that the energy and momentum of the total field
constitute a four-vector. Moreover, this four-vector is space-
like, so that it is possible to find inertial systems where the
radiation energy becomes negative. A striking demonstration
of this property is found in connection with the Cherenkov

effect, in the frame where the emitting particle is at rest. A
clear introduction to this kind of theory is found in Møller’s
book �42�, and the theory is discussed also in papers of one
of the present authors �39,43�.

In our opinion there is no strong connection between the
Feigel effect and relativity. The force on the fluid, or the
momentum transferred to it, are calculated assuming the fluid
to be at rest. Relativity is as little involved here as it is
involved in the description of the Walker-Lahoz experiment.
An exceptional case is, however, if the Euler-Heisenberg La-
grangian is drawn into consideration as a model to describe
the ME effect �cf. for instance, van Tiggelen et al. �22��.

�9� It is of interest to have an idea about the magnitude of
the effect that we have considered. Magnetoelectric birefrin-
gence is actually found even in a vacuum, when there are
strong crossed external fields E0 and H0 present. The effect
is, however, extremely small. Let �n=nB−nE denote the dif-
ference in the refractive index between the magnetic and
electric directions. Even with a strong magnetic field of 30 T
and an electric field of 108 V /m the birefringence is only
�n�8�10−23 �7�.

A more promising case is when one applies strong or-
thogonal fields to a linear isotropic liquid. Thus Roth and
Rikken �2� performed an experiment in which molecular liq-
uids were placed in such a strong field region. By passing
laser light through the liquid, perpendicular to the fields, they
obtained a linear relationship between the field strength and
the MR birefringence. With a magnetic field strength up to
17 T and an electric field of 2.5�105 V /m the ME birefrin-
gence was found to be of order �n�10−11. Thus the ME
effect is much larger in a liquid than in a vacuum.

Naturally occurring anisotropies, the case that we have
been considering, seem actually to be stronger. Thus the
crystal FeGaO3 is known to be magnetoelectrically active
with ME coefficients about 3�10−4 at low frequencies. In
this crystal, as well as in analogous crystals like FeAlO3,
anisotropies of order 10−4 are expected over a wide fre-
quency range from dc to x rays �44�.
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